Logotipo
Unionpédia
Comunicação
Disponível no Google Play
Novo! Faça o download do Unionpédia em seu dispositivo Android™!
Faça o download
Acesso mais rápido do que o navegador!
E sem anúncios!

1 − 2 + 3 − 4 + ⋯

Os primeiros mil termos e somas parciais de 1 − 2 + 3 − 4 + …. Em matemática a expressão, 1 − 2 + 3 − 4 + … é uma série infinita cujos termos são números inteiros, que vão alternando seus sinais.

52 relações: Adição, Émile Borel, Bem definido, Conjunto contável, Constante de Apéry, Década de 1890, Derivada, Divisão polinomial, Equação, Equação funcional, Ernesto Cesàro, Eugène Charles Catalan, Função eta de Dirichlet, Função iterada, Função zeta de Riemann, Generalização, Heurística, Integral de Riemann, Leonhard Euler, Limite de uma sequência, Matemática, Média aritmética, Número inteiro, Número natural, Número tetraédrico, Número triangular, Números de Bernoulli, Niels Henrik Abel, Notação matemática, Operador de diferença, Otto Hölder, Problema de Basileia, Produto de Cauchy, Resolução de equações, Série (matemática), Série de Dirichlet, Série de Grandi, Série de Taylor, Série divergente, Série geométrica, Soma de Borel, Soma de Cesàro, Soma de Euler, Teorema de Taylor, Teorema do valor médio, Teste da divergência, Valor absoluto, 0 (número), 1 + 2 + 3 + 4 + ⋯, 1749, ..., 1755, 1891. Expandir índice (2 mais) »

Adição

Adição é uma das operações básicas da álgebra.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Adição · Veja mais »

Émile Borel

Félix Édouard Justin Émile Borel (Saint-Affrique, — Paris) foi um matemático e político francês.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Émile Borel · Veja mais »

Bem definido

Em matemáticas, o termo bem definido(a) se utiliza para especificar que um conceito (uma função, uma propriedade, uma relação, uma operação etc.) se define de forma lógica ou matemática usando um conjunto de axiomas básicos sem ambigüidade alguma, e sem contradizer nenhum axioma.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Bem definido · Veja mais »

Conjunto contável

Na matemática, um conjunto contável é um conjunto de mesma cardinalidade (número de elementos) de um subconjunto qualquer do conjunto dos números naturais.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Conjunto contável · Veja mais »

Constante de Apéry

Em matemática, a constante de Apéry é um curioso número que ocorre em situações variadas.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Constante de Apéry · Veja mais »

Década de 1890

Século: Século XVIII - Século XIX - Século XX Décadas: 1860 1870 1880 - 1890 - 1900 1910 1920 Anos: 1891 - 1892 - 1893 - 1894 - 1895 - 1896 - 1897 - 1898 - 1899 - 1900 A década de 1890 foi o período de tempo entre 1 de janeiro de 1891 e 31 de dezembro de 1900.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Década de 1890 · Veja mais »

Derivada

No cálculo, a derivada em um ponto de uma função y.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Derivada · Veja mais »

Divisão polinomial

Em álgebra a divisão polinomial é um algoritmo para dividir um polinómio por outro polinómio de menor ou igual grau, ou seja, uma versão generalizada da técnica aritmética de divisão.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Divisão polinomial · Veja mais »

Equação

Na matemática, uma equação é uma igualdade envolvendo uma ou mais incógnitas (valores desconhecidos).

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Equação · Veja mais »

Equação funcional

Em matemática, uma equação funcional é toda a equação em que as variáveis, são funções.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Equação funcional · Veja mais »

Ernesto Cesàro

Ernesto Cesàro (Nápoles, — Torre Annunziata) foi um matemático italiano que atuou no campo da geometria diferencial.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Ernesto Cesàro · Veja mais »

Eugène Charles Catalan

Eugène Charles Catalan (Bruges, 30 de Maio de 1814 — Liège, 14 de Fevereiro de 1894) foi um matemático belga, que se distingiu pelos seus estudos sobre a teoria dos números.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Eugène Charles Catalan · Veja mais »

Função eta de Dirichlet

Em matemática, na área de teoria analítica dos números, a função eta de Dirichlet é definida como onde ζ é a função zeta de Riemann.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Função eta de Dirichlet · Veja mais »

Função iterada

Em matemática, função iterada é uma função que é composta consigo mesma, em forma repetida, em um processo chamado iteração.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Função iterada · Veja mais »

Função zeta de Riemann

Função zeta de Riemann em um plano complexo A função zeta de Riemann é uma função especial de variável complexa, definida para \mathrm(s)>1 pela série \zeta(s).

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Função zeta de Riemann · Veja mais »

Generalização

Generalização é um elemento fundamental da lógica e raciocínio humano.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Generalização · Veja mais »

Heurística

Heurísticas são processos cognitivos empregues em decisões não racionais, sendo definidas como estratégias que ignoram parte da informação com o objetivo de tornar a escolha mais fácil e rápida.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Heurística · Veja mais »

Integral de Riemann

No ramo da matemática conhecido como análise real, a integral de Riemann, criada por Bernhard Riemann, foi a primeira definição rigorosa de uma integral de uma função em um intervalo.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Integral de Riemann · Veja mais »

Leonhard Euler

Leonhard Paul Euler (Basileia, São Petersburgo) foi um matemático e físico suíço de língua alemã que passou a maior parte de sua vida na Rússia e na Alemanha.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Leonhard Euler · Veja mais »

Limite de uma sequência

Sem descrição

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Limite de uma sequência · Veja mais »

Matemática

grego representado por Raphael em A Escola de Atenas. A matemática (do grego μάθημα, transl. máthēma, 'ciência', conhecimento' ou 'aprendizagem'; e μαθηματικός, transl. mathēmatikós, 'inclinado a aprender') é a ciência do raciocínio lógico e abstrato, que estuda quantidades, medidas, espaços, estruturas, variações e estatísticas.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Matemática · Veja mais »

Média aritmética

Arquitas de Tarento, um matemático pitagórico que floresceu por volta de 400 a.C., definiu que existiam três tipos de média.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Média aritmética · Veja mais »

Número inteiro

Os números inteiros são constituídos dos números naturais e seus simétricos negativos, incluindo o zero.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Número inteiro · Veja mais »

Número natural

Um número natural é um número inteiro não negativo \. Em alguns contextos, número natural é definido como um número inteiro positivo, não sendo o zero considerado como um número natural \. O conjunto dos números naturais é, comumente, denotado pelo símbolo \mathbb.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Número natural · Veja mais »

Número tetraédrico

Um número tetraédico ou número piramidal triangular, é um número figurado que pode ser representado por uma pirâmide com uma base e três lados, isto é, um tetraedro.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Número tetraédrico · Veja mais »

Número triangular

Um número triangular é um número natural que pode ser representado na forma de triângulo equilátero.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Número triangular · Veja mais »

Números de Bernoulli

Na matemática, os números de Bernoulli são seqüências de números racionais com profundas conexões na teoria dos números.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Números de Bernoulli · Veja mais »

Niels Henrik Abel

Niels Henrik Abel (Nedstrand, — Froland) foi um matemático norueguês.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Niels Henrik Abel · Veja mais »

Notação matemática

O símbolo de infinito (\infty) em vários estilos de caracteres. Notação matemática é uma linguagem cuja grafia e semântica se utiliza dos símbolos matemáticos e da lógica matemática, respectivamente.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Notação matemática · Veja mais »

Operador de diferença

Em matemática, um operador de diferença transforma uma função f(x) para outra função, f(x + a) - f(x + b).

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Operador de diferença · Veja mais »

Otto Hölder

Otto Ludwig Hölder (Estugarda, — Leipzig) foi um matemático alemão.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Otto Hölder · Veja mais »

Problema de Basileia

O Problema de Basileia é um famoso problema de teoria dos números proposto pela primeira vez por Pietro Mengoli e resolvido por Leonhard Euler em 1735.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Problema de Basileia · Veja mais »

Produto de Cauchy

Em matemática, o produto de Cauchy (em homenagem a Augustin Louis Cauchy) de duas séries formais (isto é, não necessariamente convergentes) de números reais ou complexos.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Produto de Cauchy · Veja mais »

Resolução de equações

Em matemática, resolver uma equação é encontrar quais valores (números, funções, conjuntos, etc.) satisfazem determinada condição expressa através de uma equação (duas expressões relacionadas por uma igualdade).

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Resolução de equações · Veja mais »

Série (matemática)

Em matemática, o conceito de série, ou ainda, série infinita, surgiu da tentativa de generalizar o conceito de soma para uma sequência de infinitos termos.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Série (matemática) · Veja mais »

Série de Dirichlet

Em matemática uma série de Dirichlet, é qualquer série cuja forma geral é: onde s e an, n.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Série de Dirichlet · Veja mais »

Série de Grandi

A série infinita 1 − 1 + 1 − 1 + · · · é chamada série de Grandi, em homenagem ao matemático, filósofo e sacerdote italiano Guido Grandi, que em 1703 realizou trabalhos de destaque sobre esta série.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Série de Grandi · Veja mais »

Série de Taylor

Em matemática, uma série de Taylor é a série de funções da forma: onde f(x) é uma função analítica dada.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Série de Taylor · Veja mais »

Série divergente

Em matemática, uma série divergente é uma série que não converge.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Série divergente · Veja mais »

Série geométrica

A série geométrica é a série que se obtém quando se tenta somar os infinitos termos de uma progressão geométrica: \sum_^r^.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Série geométrica · Veja mais »

Soma de Borel

Em matemática, uma soma de Borel é uma generalização da noção comum de soma de uma série.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Soma de Borel · Veja mais »

Soma de Cesàro

Em análise matemática, a soma de Cesàro é um meio alternativo de descrever a soma de uma série infinita.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Soma de Cesàro · Veja mais »

Soma de Euler

A Soma de Euler é um método da soma para séries convergentes e divergentes.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Soma de Euler · Veja mais »

Teorema de Taylor

Em cálculo, o Teorema de Taylor, recebe seu nome do matemático britânico Brook Taylor, quem o enunciou em 1712.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Teorema de Taylor · Veja mais »

Teorema do valor médio

Em matemática, o teorema do valor médio (também conhecido como Teorema de Lagrange) afirma que dada uma função contínua f definida num intervalo fechado e diferenciável em (a,b), existe algum ponto c em (a,b) tal que:f'(c).

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Teorema do valor médio · Veja mais »

Teste da divergência

Em matemática, o teste da divergência ou teste do termo geral estabelece que uma série numérica não pode convergir se o seu termo geral não converge para zero.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Teste da divergência · Veja mais »

Valor absoluto

Valor absoluto pode significar.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e Valor absoluto · Veja mais »

0 (número)

O zero (0) é um númeroBertrand Russell (2009).

Novo!!: 1 − 2 + 3 − 4 + ⋯ e 0 (número) · Veja mais »

1 + 2 + 3 + 4 + ⋯

A soma de todos os números naturais 1 + 2 + 3 + 4 + · · · é uma série divergente.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e 1 + 2 + 3 + 4 + ⋯ · Veja mais »

1749

---- (na numeração romana) foi um ano comum do século XVIII do actual Calendário Gregoriano, da Era de Cristo, e a sua letra dominical foi E (52 semanas), teve início a uma quarta-feira e terminou também a uma quarta-feira.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e 1749 · Veja mais »

1755

---- (na numeração romana) foi um ano comum do século XVIII do actual Calendário Gregoriano, da Era de Cristo, e a sua letra dominical foi E (52 semanas), teve início a uma quarta-feira e terminou também a uma quarta-feira.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e 1755 · Veja mais »

1891

---- (na numeração romana) foi um ano comum do século XIX do actual Calendário Gregoriano, da Era de Cristo, e a sua letra dominical foi D (53 semanas), teve início a uma quinta-feira e terminou também a uma quinta-feira.

Novo!!: 1 − 2 + 3 − 4 + ⋯ e 1891 · Veja mais »

Redireciona aqui:

1 − 2 + 3 − 4 + · · ·, Euler e as séries infinitas.

CessanteEntrada
Ei! Agora estamos em Facebook! »